Conversations with Oncology Investigators
Bridging the Gap between Research and Patient Care

EDITOR
Neil Love, MD

INTERVIEWS
Brian I Rini, MD
Robert A Figlin, MD
Michael B Atkins, MD
Renal Cell Cancer Update
A Continuing Medical Education Audio Series

STATEMENT OF NEED/TARGET AUDIENCE
Approximately 40,000 new cases of renal cell cancer (RCC) occur annually, with 13,000 deaths due to the disease. Recently, increased understanding of the biology of RCC and emerging clinical trial results have led to the emergence of new therapeutic options for patients. In order to offer optimal patient care — including the option of clinical trial participation — the practicing medical oncologist must be well informed of these advances. To bridge the gap between research and patient care, Renal Cell Cancer Update utilizes one-on-one interviews and round-table discussions with leading oncology investigators. By providing access to the latest research developments and expert perspectives, this CME activity assists medical oncologists in the formulation of up-to-date clinical management strategies.

GLOBAL LEARNING OBJECTIVES
• Describe the biology underlying clear cell RCC, including inactivation of the von Hippel-Lindau (VHL) tumor suppressor gene and the pathway leading to VEGF overexpression.
• Examine current treatment options for advanced renal cell carcinoma, including the safety and efficacy of targeted biologic therapies inhibiting VEGF, PDGF and EGF receptors.
• Evaluate the impact of pathologic grade on the selection of therapies and clinical outcomes in RCC and identify molecular targets believed to have clinical relevance in RCC.
• Develop a therapeutic approach for the sequencing and duration of treatment with targeted biologic therapies for the management of RCC.
• Describe ongoing studies in the adjuvant and metastatic settings in order to counsel appropriately selected patients regarding participation.

PURPOSE OF THIS ISSUE OF RENAL CELL CANCER UPDATE
The purpose of Issue 1 of Renal Cell Cancer Update is to support these global objectives by offering the perspectives of Drs Rini, Figlin and Atkins on the integration of emerging clinical research data into the management of renal cell cancer.

ACCREDITATION STATEMENT
Research To Practice is accredited by the Accreditation Council for Continuing Medical Education to provide continuing medical education for physicians.

CREDIT DESIGNATION STATEMENT
Research To Practice designates this educational activity for a maximum of 3.25 AMA PRA Category 1 Credit(s)™. Physicians should only claim credit commensurate with the extent of their participation in the activity.

HOW TO USE THIS CME ACTIVITY
This CME activity contains both audio and print components. To receive credit, the participant should listen to the CDs, review the monograph and complete the Post-test and Evaluation Form located in the back of this monograph or on our website. This monograph contains edited comments, clinical trial schemas, graphics and references that supplement the audio program. RenalCellCancerUpdate.com includes an easy-to-use, interactive version of this monograph with links to relevant full-text articles, abstracts, trial information and other web resources indicated here in blue underlined text.

This program is supported by education grants from Bayer Pharmaceuticals Corporation/Onyx Pharmaceuticals Inc and Genentech BioOncology.
3 INTERVIEWS

Brian I Rini, MD
Department of Solid Tumor Oncology and Urology
Cleveland Clinic Taussig Cancer Center
Associate Professor of Medicine
CCF/CWRU Lerner College of Medicine
Cleveland, Ohio

Robert A Figlin, MD
Arthur and Rosalie Kaplan Professor of Oncology
Chair, Division of Medical Oncology and Therapeutics Research
Associate Director of Clinical Research
City of Hope Comprehensive Cancer Center
City of Hope National Medical Center and Beckman Research Institute
Duarte, California

Michael B Atkins, MD
Director of Biologic Therapy and Cutaneous Oncology Programs
Director, Cancer Clinical Trials Office
Associate Director for Clinical Research
Beth Israel Deaconess Cancer Center
Deputy Director, Division of Hematology/Oncology
Beth Israel Deaconess Medical Center
Leader, Renal Cancer Program
Dana-Farber/Harvard Cancer Center
Professor of Medicine
Harvard Medical School
Boston, Massachusetts

18 POST-TEST

19 EVALUATION FORM
CONTENT VALIDATION AND DISCLOSURES

Research To Practice is committed to providing its participants with high-quality, unbiased and state-of-the-art education. We assess potential conflicts of interest with faculty, planners and managers of CME activities. Real or apparent conflicts of interest are identified and resolved by a peer review content validation process. The content of each activity is reviewed by both a member of the scientific staff and an external independent reviewer for fair balance, scientific objectivity of studies referenced and patient care recommendations.

The scientific staff and consultants for Research To Practice are involved in the development and review of content for educational activities and report the following real or apparent conflicts of interest for themselves (or their spouses/partners) that have been resolved through a peer review process: John H Brebner, Clayton C Campbell, Anne Jacobson, MPH, Richard Kaderman, PhD, Neil Love, MD, Douglas Paley, Michelle Paley, MD, Margaret Peng, Lilliam Sklaver Poltorack, PharmD, Ginelle Suarez, Erin Wall and Kathryn Ault Ziel, PhD — no real or apparent conflicts of interest to report; Marie Bialek, PharmD — Freelance/Contract Medical Writer: McNeil Consumer & Specialty Pharmaceuticals, Janssen Pharmaceutica Products LP; Sally Bogert, RNC, WHCNP — shareholder of Amgen Inc and Genentech BioOncology. Research To Practice receives education grants from Abraxis BioScience, Amgen Inc, AstraZeneca Pharmaceuticals LP, Bayer Pharmaceuticals Corporation/Onyx Pharmaceuticals Inc, Biogen Idec, Genentech BioOncology/OSI Pharmaceuticals Inc, Genomic Health Inc, Roche Laboratories Inc and Sanofi-Aventis, who have no influence on the content development of our educational activities.

In addition, the following faculty (and their spouses/partners) have reported real or apparent conflicts of interest that have been resolved through a peer review process:

Dr Rini — Consulting Fees and Contracted Research: Bayer Pharmaceuticals Corporation/Onyx Pharmaceuticals Inc, Genentech BioOncology.

This educational activity contains discussion of published and/or investigational uses of agents that are not indicated by the Food and Drug Administration. Research To Practice does not recommend the use of any agent outside of the labeled indications. Please refer to the official prescribing information for each product for discussion of approved indications, contraindications and warnings. The opinions expressed are those of the presenters and are not to be construed as those of the publisher or grantors.

UPCOMING EDUCATIONAL EVENTS

NCCN Clinical Practice Guidelines in Oncology Symposium™: Kidney Cancer
May 16, 2007
New York, New York
Website: www.nccn.org

ASCO 2007 Annual Meeting
June 1-5, 2007
Chicago, Illinois
Website: www.asco.org

ECOG Semi-Annual Meeting
June 8-10, 2007
Washington, DC
Website: www.ecog.org

CALGB Semi-Annual Meeting
June 21-24, 2007
Baltimore, Maryland
Website: www.calgb.org

14th European Cancer Conference (ECCO)
September 23-27, 2007
Barcelona, Spain
Website: www.fecs.be

The Clinical Trials Workshop
October 26-28, 2007
Denver, Colorado
Website: www.asco.org
Tracks 1-20

Track 1 Development of anti-angiogenic therapeutic agents in renal cell carcinoma (RCC)
Track 2 Phase III trial of interferon with or without bevacizumab as first-line therapy for RCC
Track 3 Efficacy of the multikinase inhibitors (MKIs) sunitinib and sorafenib: Clinical implications of sequencing
Track 4 Bevacizumab-associated hypertension and proteinuria
Track 5 Value of debulking nephrectomy for patients with metastatic disease
Track 6 Treatment with bevacizumab for patients with hypertension or at risk for arterial events
Track 7 Tolerability and side effects of sunitinib and sorafenib
Track 8 Hand-foot syndrome associated with sunitinib and sorafenib
Track 9 Sunitinib-associated thyroid abnormalities
Track 10 ASSURE: Phase III trial of adjuvant sorafenib, sunitinib or placebo for intermediate- or high-risk RCC
Track 11 Rationale for the effectiveness of anti-angiogenic agents in the microscopic versus macroscopic disease setting
Track 12 Surgical resection after treatment with an MKI for metastatic disease
Track 13 Identification of responders versus nonresponders to MKIs
Track 14 Potential mechanism of action of MKIs in RCC
Track 15 Temsirolimus in poor-risk RCC
Track 16 Studies evaluating the combination of bevacizumab and MKIs in RCC
Track 17 Downstaging RCC for potentially curative resection
Track 18 Future clinical research strategies in RCC
Track 19 Systemic treatment of nonclear cell RCC
Track 20 Dose escalation and tumor response to MKIs

Select Excerpts from the Interview

Track 1

DR LOVE: Can you discuss the emerging role of the multikinase inhibitors in renal cell cancer?
With an emerging understanding of the biology, it’s clear that the angiogenic pathways are relevant to kidney cancer pathophysiology, and as such, several agents have been developed that target various aspects of that pathway. One class of agents includes small-molecule inhibitors of receptors that are present on blood vessels and endothelial cells — receptors for vascular endothelial growth factor, or VEGF.

Agents that block VEGF, such as sunitinib and sorafenib, were both FDA approved in late 2005 or early 2006, because they demonstrated general shrinkage of tumor burden in the majority of patients and objective responses in a smaller subset of patients, ranging anywhere from 10 to up to 40 percent with sunitinib. Sorafenib delayed time to progression in a randomized controlled trial.

Since these FDA approvals, sunitinib was compared to interferon in a front-line study and revealed a fairly dramatic progression-free survival benefit of 11 versus five months and also maintained the response rate of 30 to 40 percent. Sunitinib has become a front-line reference standard for renal cell cancer. Sorafenib has had less development as initial therapy, and we’re waiting on pending clinical trials for this agent.

Track 2

DR LOVE: What do we know about bevacizumab in the treatment of renal cell carcinoma?

DR RINI: Bevacizumab has demonstrated tumor shrinkage of around 70 percent and a respectable progression-free survival in the front-line setting.

A large Phase III trial of bevacizumab with interferon versus interferon alone (1.1) should be reported at ASCO this year. I believe it will establish bevacizumab as a standard component of front-line therapy for renal cell cancer.

Interferon-α with or without Bevacizumab as First-Line Treatment for Metastatic Renal Cell Carcinoma

Protocol ID: BO17705 (AVOREN)

Accrual: 649 (Closed)

Eligibility
- Treatment-naive patients ≥18 years of age
- Metastatic renal cell cancer (clear cell type)
- Nephrectomy
- No proteinuria

Eligibility
- Interferon-α2a and placebo
- Interferon-α2a and bevacizumab 10 mg/kg, q2wk

Sources: Genentech press release, December 11, 2006; Thomson Centerwatch, March 2007 (www.roche-trials.com/patient/trials/trial10.html).
The trial randomly assigned patients to either interferon alone, which was the standard treatment at the time, or the combination of bevacizumab and interferon.

The study was placebo controlled — patients received either interferon/placebo or interferon/bevacizumab. It was powered to evaluate both overall survival and progression-free survival.

According to a press release issued about the trial, the interim analysis showed that bevacizumab significantly prolonged progression-free survival. In addition, this early analysis indicated a trend toward an improvement in overall survival.

Track 4

DR LOVE: What side effects have been observed with bevacizumab, specifically in renal cell cancer?

DR RINI: The predominant side effects of bevacizumab have been, as in other diseases but perhaps more prominently in renal cancer, hypertension and proteinuria (Yang 2003). The exact mechanism is not well defined, but these are common side effects that probably occur in 30 or 40 percent of recipients. These events can be Grade III in five or 10 percent of the patients, depending on the definition. Having said that, bevacizumab is a well-tolerated day-to-day drug.

It’s administered as an IV infusion every other week, and we do not see many common side effects. Hypertension is generally well managed with standard antihypertensive approaches. Proteinuria is not terribly significant clinically unless it reaches the nephrotic range, which is not common.

Bevacizumab carries the risk of the rare but serious side effects of bleeding, clotting, gastrointestinal perforation and other cardiac issues. Those events are relatively uncommon, but again, they are in the rare but serious category.

Track 7

DR LOVE: Let’s talk about the multityrosine kinase inhibitors (MTKIs). Based on your clinical experience, how would you compare the tolerability of sorafenib and sunitinib?

DR RINI: We have no head-to-head comparison, but I believe sorafenib tends to be a little better tolerated. If you had a group of 100 patients receiving each drug, it is probably true that sorafenib would be a little better tolerated, on average. Its side effects generally peak somewhere around weeks four to six, and then they tend to dissipate.

Sunitinib is dosed differently. It’s administered intermittently — four weeks on, two weeks off. So those side effects tend to build up over four weeks, resolve over two weeks and then reappear during the dosing period.
The timing, the schedule and the appearance of side effects are different for each agent.

Track 9

DR LOVE: Can you review the paper you recently published about sunitinib and thyroid function in the *Journal of the National Cancer Institute* (Rini 2007)?

DR RINI: We assessed a large number of our patients with metastatic kidney cancer who received sunitinib on one of a variety of trials. We began performing thyroid function tests routinely at baseline and then every two cycles because of reports of thyroid dysfunction associated with sunitinib treatment in patients with GIST. We found that approximately 85 percent of patients (56 out of 66) had one or more abnormalities related to thyroid function.

A smaller subset — approximately half of those patients — had more than one abnormality or exhibited clinical signs or symptoms consistent with hypothyroidism. Seventeen patients received thyroid replacement, and about half of them showed improvement in symptoms.

1.2

ECOG-E2805: Adjuvant Sorafenib or Sunitinib for Unfavorable Renal Carcinoma (ASSURE)

Select Eligibility Criteria
- Clear cell or non-clear cell renal carcinoma
- Radical or partial nephrectomy
- Intermediate- or high-risk disease
- No evidence of residual or metastatic disease

Target Accrual: 1,332

Current Accrual: 189 (2/24/2007)

Date Activated: April 24, 2006

Study Contacts

Eastern Cooperative Oncology Group
Naomi Balzer-Haas, MD, Protocol Chair
Keith Flaherty, MD, Protocol Co-Chair
Robert Uzzo, MD, Protocol Co-Chair

Cancer and Leukemia Group B
Christopher Kane, MD, Protocol Chair

Southwest Oncology Group
Christopher Wood, MD, Protocol Chair

NCIC-Clinical Trials Group
Michael Jewett, MD, Protocol Chair

Sources: NCI Physician Data Query, April 2007; www.ctsu.org
If patients stay on sunitinib therapy long enough, there is evidence that they are likely to develop hypothyroidism. It should be monitored, and if patients develop hypothyroidism, it should be treated.

Track 10

- **DR LOVE:** Can you discuss the ECOG-E2805 adjuvant trial evaluating sorafenib and sunitinib?

- **DR RINI:** The large Intergroup trial by ECOG started a few months ago and has accrued a few hundred patients with kidney cancer who have undergone a nephrectomy (ECOG-E2805; [1,2]). These patients do not have metastatic disease, but they are at high risk for cancer recurrence based on size, grade, lymph node involvement and other factors. Eligible patients are randomly assigned to placebo, sunitinib or sorafenib for one year. It’s a blinded trial, so all the pills are matched.

The primary endpoint is disease-free survival. The target accrual is approximately 1,300 patients, which should take an additional 3 to 3.5 years for enrollment, and then it’ll take some time after that to record recurrences and meet the endpoint.

SELECT PUBLICATIONS

Escudier B et al. *Randomized phase II trial of the multi-kinase inhibitor sorafenib versus interferon (IFN) in treatment-naive patients with metastatic renal cell carcinoma (mRCC).* *Proc ASCO* 2006; Abstract 4501.

Motzer RJ et al. *Phase III randomized trial of sunitinib malate (SU11248) versus interferon-alfa (IFN-α) as first-line systemic therapy for patients with metastatic renal cell carcinoma (mRCC).* *Proc ASCO* 2006; Abstract LBA3.

Tamaskar I et al. *Antitumor effects of sorafenib and sunitinib in patients with metastatic renal cell carcinoma (mRCC) who had prior therapy with anti-angiogenic agents.* *Proc ASCO* 2006; Abstract 4597.

Tracks 1-17

Track 1 Overview of RCC
Track 2 Genetic abnormalities, angiogenesis and the biology of RCC
Track 3 Incorporation of molecular signatures into the UCLA and Memorial staging systems
Track 4 Biologic rationale for the development of novel agents in the treatment of RCC
Track 5 Role of sunitinib and sorafenib in the treatment of good- and intermediate-risk RCC
Track 6 The mTOR inhibitor temsirolimus for intermediate- or poor-prognosis RCC
Track 7 Clinical benefits and side effects of the angiogenesis inhibitors in RCC
Track 8 Clinical trial data on the anti-VEGF monoclonal antibody bevacizumab in RCC
Track 9 HIF-driven versus VEGF-driven pathways in poor- versus good-risk RCC and the selection of a treatment approach
Track 10 SELECT trial: Identification of molecular markers to predict benefit from interleukin-2
Track 11 Clinical algorithm for the treatment of metastatic RCC
Track 12 Counseling patients about side effects and toxicities with the multitargeted and mTOR inhibitors
Track 13 Hand-foot syndrome associated with sunitinib and sorafenib
Track 14 Potential differences in the hand-foot syndrome associated with fluoropyrimidines versus MKIs
Track 15 Combining targeted agents with “vertical and horizontal inhibition” strategies
Track 16 ASSURE (ECOG-E2805): Adjuvant sorafenib, sunitinib or placebo for intermediate- or high-risk RCC
Track 17 Role of novel targeted agents in the treatment of papillary RCC

Select Excerpts from the Interview

Track 1

DR LOVE: Can you track out the recent evolution of clinical trial data in renal cell cancer?

DR FIGLIN: The paradigm with kidney cancer is evolving. In December
2005, sorafenib was approved for metastatic renal cell cancer. In January 2006, sunitinib was approved for advanced renal cell cancer. A plenary session at ASCO 2006 presented data on temsirolimus (Hudes 2006), another agent that will soon become available.

Let me paint the picture for why these agents have resulted in such spectacular benefit. Clear cell kidney cancer most often has a genetic abnormality associated with the von Hippel-Lindau gene, which activates the hypoxia-inducible factor (HIF), which then activates the vascular endothelial growth factor (VEGF) and angiogenesis pathways.

One could imagine that if we had agents that could inhibit HIF or the angiogenesis pathway, alone or in combination, we would have drugs that may be effective for kidney cancer.

In 2007 and through 2008, we will have at least four drugs that meet that description. We have the VEGF receptor tyrosine kinase inhibitors (TKIs) sorafenib and sunitinib, which inhibit the activation of the VEGF receptor. We have bevacizumab, a VEGF ligand antibody that inhibits before activation of the receptor. We also have temsirolimus, which inhibits HIF and therefore angiogenesis.

DR LOVE: Could you clarify how HIF interacts with VEGF?

DR FIGLIN: Angiogenesis is a downstream effect of HIF — HIF activation activates angiogenesis and angiogenesis activates the receptor, all in a sequence of steps. HIF inhibition results in a downregulation of VEGF and other proangiogenic factors. Therefore, if you inhibit HIF, you also inhibit angiogenesis.

DR LOVE: Can you discuss the two MTKIs, sunitinib and sorafenib?

DR FIGLIN: Sunitinib is a small-molecule oral TKI that, when administered to patients with good- and intermediate-prognosis renal cell cancer, significantly improved progression-free survival compared to standard interferon therapy (Motzer 2007).

This treatment is associated with a more than twofold improvement in progression-free survival. This improvement occurs across all treatment groups, including patients with good and intermediate prognoses.

Sorafenib is also a VEGF receptor TKI. It was approved in December 2005 because of a trial demonstrating that sorafenib, when compared to placebo in previously cytokine-treated patients, conferred a significant progression-free survival difference (Escudier 2007; [2.1]).

DR LOVE: What do we know about temsirolimus?

DR FIGLIN: Temsirolimus is an ester of rapamycin that inhibits HIF and is administered intravenously at 25 milligrams weekly. We hope it will be approved by the FDA soon. Patients tolerate the therapy well.
Randomized trials presented last year at ASCO showed a significant improvement in progression-free and overall survival among patients with intermediate- and poor-prognosis renal cell cancer (Hudes 2006).

This has resulted in a dramatic opportunity for patients that heretofore were sent home for hospice care. Temsirolimus is the first treatment that has been shown to produce a survival benefit in renal cell cancer, which is truly no small feat.

<table>
<thead>
<tr>
<th>2.1 Overall and Progression-Free Survival Following Sorafenib or Placebo in Advanced Clear Cell RCC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sorafenib (n = 451)</td>
</tr>
<tr>
<td>---------------------</td>
</tr>
<tr>
<td>Overall survival (first analysis)*</td>
</tr>
<tr>
<td>Overall survival (second analysis)†</td>
</tr>
<tr>
<td>Progression-free survival</td>
</tr>
</tbody>
</table>

* First analysis, prior to treatment crossover, six months’ follow-up, May 2005
† Second analysis, following treatment crossover, November 2005
NR = not reached; NS = not significant

Track 8

DR LOVE: What do we know about bevacizumab and renal cell cancer?

DR FIGLIN: Bevacizumab was the first drug in kidney cancer that demonstrated an improvement in progression-free survival (Yang 2003). Although the time to progression was better, it was unclear exactly how to develop the drug.

A series of trials ensued, the second of which we presented last year at ASCO (Bukowski 2006) that compared bevacizumab and erlotinib to bevacizumab and placebo and showed that approximately 13 to 14 percent of patients had objective responses and another 60 to 65 percent of patients had stable disease with bevacizumab.

However, the addition of erlotinib added no benefit with respect to progression-free survival. It appeared that bevacizumab alone showed substantial activity in untreated patients, with progression-free survival in the eight- to nine-month range.

DR LOVE: What about objective response rates to treatment with bevacizumab alone?

DR FIGLIN: The objective response rate to bevacizumab alone is approxi-
mately 13 to 14 percent among previously untreated patients and about 10 percent among previously treated patients. It is important for the oncologist not to focus only on the response rate. The overall disease-control rate of about 80 percent is the significant piece of information.

Currently, two trials evaluating bevacizumab in RCC are taking place, one in the United States (CALGB-90206; Rini 2004) and one in Europe (BO17705; 1.1, page 4). Each of these trials is a comparison of bevacizumab/interferon to interferon alone.

A recent press release indicated that BO17705 was a statistically positive trial, with an improvement in progression-free survival in the bevacizumab-treated group compared to the control group (Genentech BioOncology 2006). We expect to hear the results in an oral presentation at ASCO 2007.

› **DR LOVE:** What is the side-effect and tolerability profile of the combination?

› **DR FIGLIN:** We don’t have much information yet on the side-effect profile of bevacizumab and interferon in combination because it’s never been reported except in Phase I trials.

Bevacizumab, when administered alone, has good tolerability. The major side effects when administered intravenously every two weeks are basically hypertension and proteinuria, which could lead to nephrotic syndrome.

Bevacizumab doesn’t produce the lethargy, anorexia, hand-foot syndrome and other immunosuppressive complications associated with TKIs. We need to consider carefully what happens when interferon is added because interferon does involve toxicities when administered three times a week.

› **Track 9**

› **DR LOVE:** Does the fact that temsirolimus has been tested in the patients at high risk make sense biologically?

› **DR FIGLIN:** We have a clear suggestion (Atkins 2004) that patients with high-risk kidney cancer have a disease that is more often driven by a pathway called mammalian target of rapamycin (mTOR). Temsirolimus is an mTOR inhibitor that inhibits HIF and may be more appropriate for the patient at intermediate or poor risk.

Patients with good and intermediate prognoses may have a more VEGF-driven pathway, and it may be more appropriate to use targeted agents against that specific pathway.

As we better understand the biology of this cancer, we can begin to tailor the multiple treatments to that biology, as opposed to just administering the drugs to all comers. One of the challenges I have as a translational clinical investigator is to help define for practicing oncologists when to use sunitinib, when to use temsirolimus and when neither agent should be used.
DR LOVE: What are the most common tolerability issues patients have with sunitinib and sorafenib?

DR FIGLIN: The most significant dose-limiting toxicity is hand-foot syndrome. It occurs in approximately 20 to 30 percent of patients. Even Grade I and Grade II hand-foot syndrome can be troublesome for patients. It can affect their ability to walk normally and to carry out normal activities. We must be aware of this early in the course of treatment.

The biology of hand-foot syndrome is not well understood. It’s not clear whether it’s the inhibition of angiogenesis or “off-target” effects of multitargeted agents, but if you intervene early, hand-foot syndrome is rapidly reversible.

SELECT PUBLICATIONS

Azad N et al. Increased efficacy and toxicity with combination anti-VEGF therapy using sorafenib and bevacizumab. Presentation. ASCO 2006;Abstract 3004.

Pugh CW, Ratcliffe PJ. Regulation of angiogenesis by hypoxia: Role of the HIF system. Nat Med 2003;9(6):677-84. Abstract

Dr Atkins is Director of Biologic Therapy and Cutaneous Oncology Programs, Director of the Cancer Clinical Trials Office and Associate Director for Clinical Research at the Beth Israel Deaconess Cancer Center, Deputy Director of the Division of Hematology/Oncology at the Beth Israel Deaconess Medical Center, Leader of the Renal Cancer Program at Dana-Farber/Harvard Cancer Center and Professor of Medicine at Harvard Medical School in Boston, Massachusetts.

Select Excerpts from the Interview

Track 3

› **DR LOVE:** Can you discuss the new biologic agents that are emerging in the treatment of renal cell cancer?
Renal cell cancer is unique in that it appears to be the one solid tumor that is directly sensitive to anti-angiogenic or anti-VEGF pathway inhibitors when used as single agents. In other cancers, drugs like bevacizumab have shown activity but all in combination with chemotherapy. That brings into play a lot of other mechanisms.

When we talk about renal cell cancer being sensitive to these agents as single agents, we believe the reason is that kidney cancer cells have “grown up” surrounded by VEGF and haven’t had to work to develop other means of obtaining a blood supply.

This tumor is highly dependent on VEGF, and when you administer a drug like bevacizumab that binds VEGF or a drug that blocks the receptors, like sunitinib or sorafenib, you see almost immediate effects. That’s a unique situation directly related to the biology of kidney cancer.

What are these drugs? One of the two that have been approved in the past year and a half is sorafenib, which is an oral multikinase inhibitor that inhibits Raf within tumor cells and the Raf kinase pathway and the VEGF-R2 receptor within the endothelial cells (Brugarolas 2007; [3.1]).

These two drugs, when administered to patients with advanced renal cell cancer, cause tumor shrinkage in 60 to 80 percent of patients and delay time to progression relative to control therapy.

It’s important to note that a lot of different receptors have tyrosine kinases on them, so these agents are “dirty drugs.” They not only inhibit VEGF-R2, which we believe is responsible for most of their activity, but they also inhibit other kinases. This may contribute to their activity or to their toxicity or may even produce countervailing effects that inhibit their activity.

Three approaches to combination therapy have been explored in renal cell cancer. One is trying to combine targeted agents — whether targeted against a tumor or the blood vessel — with immunotherapy. Another is combining targeted agents vertically — hitting a particular pathway at two different sites — such as binding the ligand and inhibiting the receptor simultaneously. The third approach is what we call a horizontal blockade, by which you inhibit two different pathways or parallel pathways.

Studies evaluating combinations of targeted agents with immunotherapy include one presented at ASCO last year (Ryan 2006) that evaluated sorafenib in combination with interferon, which will be published shortly. They presented encouraging results, such as 30 percent response rates and no more toxicity than one would expect, and it seems that you can combine those two agents without negative consequences (3.2).
At least in those studies, five or 10 percent of patients showed complete responses, so you might obtain the complete and durable response benefit of immunotherapy with the tumor shrinkage benefits of VEGF receptor therapy.

We will see a similar type of data at ASCO this year on bevacizumab with interferon, which is another approach to combining a targeted agent with immunotherapy, and our group is actively investigating combinations of bevacizumab with high-dose interleukin-2.

"Bevacizumab binds VEGF, preventing interaction with its receptors and activation of downstream signaling pathway. Sunitinib is an oral tyrosine kinase inhibitor with potent activity against several related protein tyrosine kinase receptors, including VEGFRs 1 to 3. Sorafenib is also an oral multikinase inhibitor that, in addition to inhibiting VEGFRs 1 to 3, also inhibits the serine threonine kinase Raf-1 involved in the Raf/mitogen-activated protein kinase/extracellular signal-regulated kinase (ERK) kinase (MEK)/extracellular signal-regulated kinase pathway activated after VEGF binding."

We’ve spent a lot of time evaluating the vertical inhibition of the VEGF pathway. The theory behind this approach is that when you block the VEGF receptor, you make the cells “hypoxic” and cause increases in circulating VEGF. This could potentially drive angiogenesis if the VEGF receptor isn’t completely blocked, so binding the circulating VEGF may create a better block on the pathway.

We found that when you combine sorafenib and bevacizumab, you see more potent activity than with either agent alone. Synergistic activity is seen in close to 50 percent of patients, but the toxicity is also synergistic. We see much more toxicity than with either agent alone and have had to reduce the dose of each agent significantly to find a tolerable dose.

The more promising approach is the horizontal blockade with combination therapy, by which you might inhibit two pathways at the same time.

For example, promising results are being obtained by inhibiting the mTOR pathway and the VEGF pathway together. We’re all interested in exploring that further in Phase II trials. Studies have also been launched evaluating sorafenib with temsirolimus.

<table>
<thead>
<tr>
<th>Adverse event</th>
<th>All grades</th>
<th>Grade III+</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fatigue</td>
<td>90%</td>
<td>30%</td>
</tr>
<tr>
<td>Diarrhea</td>
<td>62%</td>
<td>11%</td>
</tr>
<tr>
<td>Leukopenia</td>
<td>59%</td>
<td>11%</td>
</tr>
<tr>
<td>Anorexia</td>
<td>70%</td>
<td>8%</td>
</tr>
<tr>
<td>Nausea</td>
<td>64%</td>
<td>5%</td>
</tr>
<tr>
<td>Anemia</td>
<td>64%</td>
<td>5%</td>
</tr>
</tbody>
</table>

SOURCE: Ryan CW et al. *Proc ASCO* 2006; Abstract 4525.

Track 10

▶ **DR LOVE:** What do we know about sequential responses to sorafenib and sunitinib?

▶ **DR ATKINS:** We know very little. Anecdotal and observational studies are emerging. However, a formal study indicated that sunitinib has activity in patients whose disease progressed after bevacizumab (Rini 2006). You may see tumor shrinkage in close to the same number of patients, although not as robust and for not as long.

It’s also beginning to appear that if you take a break and restart the same agent, possibly at a higher dose, you can see a little response again. The physi-
ologic resistance mechanism is plastic in some regards in that if you give a patient a break from that particular agent, you might be able to obtain a benefit again.

I believe we’ll see activity in sorafenib after sunitinib failures and sunitinib after sorafenib failures. The real question is, is the response more than you would see if you just put them back on the same agent again?

The greatest potential for seeing sequential activity right now lies in studying mTOR inhibitors in tumors that have become refractory to sunitinib or sorafenib, and those studies are ongoing — big, industry-sponsored trials that will evaluate mTOR inhibition versus placebo or addition of an mTOR inhibitor versus switching to an mTOR inhibitor in patients whose disease progresses on a VEGF receptor TKI.

Track 13

DR LOVE: Based on your clinical experience and the research literature, what are the qualitative and quantitative differences in the side effects of sunitinib and sorafenib in the schedules and doses that are being used right now?

DR ATKINS: I believe sunitinib produces more fatigue, more problems with blood count and more problems with diarrhea and has also been shown to produce hypothyroidism. Also, in a small number of patients, it results in cardiac effects, including decreases in ejection fraction.

Sorafenib is more likely to produce rash and hand-foot syndrome and less likely to produce fatigue, although no formal comparison has been made between the two drugs from a toxicity standpoint. The adjuvant trial that involves sorafenib, sunitinib and a placebo will be a good opportunity to observe the differences in toxicity in patients who don’t have disease-related symptoms.

SELECT PUBLICATIONS

Azad N et al. Increased efficacy and toxicity with combination anti-VEGF therapy using sorafenib and bevacizumab. Presentation. ASCO 2006; Abstract 3004.

1. Which of the following have FDA approval for the treatment of advanced renal cell carcinoma?
 a. Sorafenib
 b. Sunitinib
 c. Temsirolimus
 d. Bevacizumab
 e. All of the above
 f. Both a and b

2. First-line therapy with sunitinib resulted in a significant improvement in progression-free survival compared to standard interferon therapy among patients with __________.
 a. Good- to intermediate-risk RCC
 b. Intermediate- to poor-risk RCC
 c. Both a and b

3. First-line therapy with temsirolimus resulted in a significant improvement in progression-free survival compared to interferon therapy among patients with __________.
 a. Good- to intermediate-risk RCC
 b. Intermediate- to poor-risk RCC
 c. Both a and b

4. A Phase III trial demonstrated that sorafenib significantly improved progression-free survival compared to placebo among patients who failed prior therapy for RCC.
 a. True
 b. False

5. Hand-foot syndrome occurs in __________ of patients treated with sorafenib or sunitinib.
 a. Two to four percent
 b. Five to 10 percent
 c. 20 to 30 percent
 d. 45 to 60 percent

6. A study of sunitinib and thyroid function revealed that ________ of sunitinib-treated patients developed one or more abnormalities in thyroid function, which may or may not be clinically significant.
 a. 66 percent
 b. 56 percent
 c. 85 percent
 d. 17 percent

7. Which of the following agents will be evaluated in ECOG adjuvant trial E2805 (ASSURE)?
 a. Sunitinib
 b. Sorafenib
 c. Temsirolimus
 d. Bevacizumab
 e. All of the above
 f. Both a and b
 g. a, b and c

8. The mechanism of action for both sorafenib and sunitinib is completely through inhibition of the VEGF tyrosine kinase.
 a. True
 b. False

9. The most common side effects of bevacizumab observed in the treatment of RCC include __________.
 a. Hypertension and proteinuria
 b. Hand-foot syndrome and fever
 c. Rash and fatigue

10. The CALGB-90206 and BO17705 trials are comparing __________.
 a. Bevacizumab/interferon to interferon alone
 b. Bevacizumab/interferon to temsirolimus/interferon
 c. Sorafenib/interferon to sunitinib/interferon
Research To Practice respects and appreciates your opinions. To assist us in evaluating the effectiveness of this activity and to make recommendations for future educational offerings, please complete this Evaluation Form. A certificate of completion will be issued upon receipt of your completed Post-test and Evaluation Form.

Please answer the following questions by circling the appropriate rating:

<table>
<thead>
<tr>
<th>Rating</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Outstanding</td>
</tr>
<tr>
<td>4</td>
<td>Good</td>
</tr>
<tr>
<td>3</td>
<td>Satisfactory</td>
</tr>
<tr>
<td>2</td>
<td>Fair</td>
</tr>
<tr>
<td>1</td>
<td>Poor</td>
</tr>
<tr>
<td>N/A</td>
<td>Not applicable to this issue of RCCU</td>
</tr>
</tbody>
</table>

GLOBAL LEARNING OBJECTIVES

To what extent does this issue of RCCU address the following global learning objectives?

- Describe the biology underlying clear cell RCC, including inactivation of the von Hippel-Lindau (VHL) tumor suppressor gene and the pathway leading to VEGF overexpression. .. 5 4 3 2 1 N/A
- Examine current treatment options for advanced renal cell carcinoma, including the safety and efficacy of targeted biologic therapies inhibiting VEGF, PDGF and EGF receptors. .. 5 4 3 2 1 N/A
- Evaluate the impact of pathologic grade on the selection of therapies and clinical outcome in RCC, and identify molecular targets believed to have clinical relevance in RCC. .. 5 4 3 2 1 N/A
- Develop a therapeutic approach for the sequencing and duration of treatment with targeted biologic therapies for the management of RCC. 5 4 3 2 1 N/A
- Describe ongoing studies in the adjuvant and metastatic settings in order to counsel appropriately selected patients regarding participation. 5 4 3 2 1 N/A

EFFECTIVENESS OF THE INDIVIDUAL FACULTY MEMBERS

<table>
<thead>
<tr>
<th>Faculty</th>
<th>Knowledge of subject matter</th>
<th>Effectiveness as an educator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brian I Rini, MD</td>
<td>5 4 3 2 1</td>
<td>5 4 3 2 1</td>
</tr>
<tr>
<td>Robert A Figlin, MD</td>
<td>5 4 3 2 1</td>
<td>5 4 3 2 1</td>
</tr>
<tr>
<td>Michael B Atkins, MD</td>
<td>5 4 3 2 1</td>
<td>5 4 3 2 1</td>
</tr>
</tbody>
</table>

OVERALL EFFECTIVENESS OF THE ACTIVITY

Objectives were related to overall purpose/goal(s) of activity.5 4 3 2 1 N/A
Related to my practice needs. .. 5 4 3 2 1 N/A
Will influence how I practice. .. 5 4 3 2 1 N/A
Will help me improve patient care. .. 5 4 3 2 1 N/A
Stimulated my intellectual curiosity. .. 5 4 3 2 1 N/A
Overall quality of material. ... 5 4 3 2 1 N/A
Overall, the activity met my expectations. ... 5 4 3 2 1 N/A
Avoided commercial bias or influence. .. 5 4 3 2 1 N/A

Which of the following audio formats of this program did you use?

- Audio CDs
- Downloaded MP3s from website
REQUEST FOR CREDIT — please print clearly

Name: .. Specialty: ..

Degree:
☐ MD ☐ DO ☐ PharmD ☐ NP ☐ BS ☐ RN ☐ PA ☐ Other……

Medical License/ME Number: Last 4 Digits of SSN (required): ………

Street Address: ..
City, State, Zip: ..
Telephone: ... Fax:

Email: ..

Research To Practice designates this educational activity for a maximum of 3.25 *AMA PRA Category 1 Credit(s)*™. Physicians should only claim credit commensurate with the extent of their participation in the activity.

I certify my actual time spent to complete this educational activity to be ______ hour(s).

Signature: .. Date:

Will the information presented cause you to make any changes in your practice?
☐ Yes ☐ No

If yes, please describe any change(s) you plan to make in your practice as a result of this activity:
..

What other topics would you like to see addressed in future educational programs?
..

What other faculty would you like to hear interviewed in future educational programs?
..

Additional comments about this activity:
..

FOLLOW-UP
As part of our ongoing, continuous quality-improvement effort, we conduct postactivity follow-up surveys to assess the impact of our educational interventions on professional practice. Please indicate your willingness to participate in such a survey:

☐ Yes, I am willing to participate in a follow-up survey. ☐ No, I am not willing to participate in a follow-up survey.

To obtain a certificate of completion and receive credit for this activity, please complete the Post-test, fill out the Evaluation Form and fax both to (800) 447-4310, or mail both to: Research To Practice, One Biscayne Tower, 2 South Biscayne Boulevard, Suite 3600, Miami, FL 33131. You may also complete the Post-test and Evaluation online at www.RenalCellCancerUpdate.com/CME.
The compact discs, internet content and accompanying printed material are protected by copyright. No part of this program may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording or utilizing any information storage and retrieval system, without written permission from the copyright owner. The opinions expressed are those of the presenters and are not to be construed as those of the publisher or grantors. Participants have an implied responsibility to use the newly acquired information to enhance patient outcomes and their own professional development. The information presented in this activity is not meant to serve as a guideline for patient management. Any procedures, medications or other courses of diagnosis or treatment discussed or suggested in this activity should not be used by clinicians without evaluation of their patients' conditions and possible contraindications or dangers in use, review of any applicable manufacturer's product information and comparison with recommendations of other authorities.